پردازش اطلاعات چند کاناله در رنج های متفاوتی از کانال اطلاعات است که در آن پردازش اطلاعات دارای زمان زیاد و پیچیدکی فضایی بالایی بعلت تنوع و گستر دگی داده ها می باشد. در این راستا بیشتر رویکردهای کلاسیک از فیلترینگ و روشهای کلاسیک استفاده می کنند . برخی از این روشها مدل تصادفی مارکوف ، فیلترینگ بردار جهت دار و مدل های ترکیبی آماری شبیه گوسین و دیریکله هستند . رویکردهای غیر کلاسیک شامل عصبی،فازی و ژنتیک می شوند.در این مقاله رویکر دهای نامبرده شده را برای ارتقای تصاویر رنگی و قطعه بندی بهتر آنها شرح می دهیم.
کلمات کلیدی: ارتقای تصاویر رنگی ، قطعه بندی تصاویر رنگی ، رویکردهای غیر کلاسیک، رویکرهای غیر کلاسیک